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 Multi-objective evolutionary optimization
» NSGA-II: Elitist non-dominated sorting genetic algorithm

* Multi-objective machine learning
» Machine learning models and algorithms

» Interpretable symbolic rule extraction from neural networks
» Multi-objective clustering

» Diverse feature extraction

» Communication-efficient federated learning

» Multi-objective adversarial learning

 Summary and future work
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Multi-objective Evolutionary Optimization



Single and Multi-Objective Optimization @ 3 A
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Single-objective optimization (SOO) Multi-objective optimization (MOO)

Profit
£(x) ot

S
S ~
S
. . . N N
AN ~ N ~ ~ S
I I N ~ N ~ S N
. . ~ ~ ~ ~ A
N ~ ~ ~ N ~
N N ~ N N ~
N N ~ ~ ~ N S~
S N N N ~
N S S S
\ N S S

X X e
minimize
* One single optimal solution can be found for SOO in most cases, whereas a finite or infinite number equally good
solutions exist for MOO
* To choose a final solution, user preference is necessary



Mathematical Description of MOO

Decision space

4

minimize f,, (X),

AX2

s.t.

P

m=1,2,.., M;

g;(X) =0, i=1,2,..,;
h(X)=0, k=1,2,...,K;

X< x < xY, i=1,2,..,n.

Objective space
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Dominance WESEE
e For minimisation problems, solution X1) dominates X if
— Solution X() is no worse than solution X in all objectives:
V m=1,2,.., M, f,(X®)<f (X)),
— Solution X() is strictly better than X(2) at least in one objective:
dm’el,2,.., M, f (X)) <f ., (X)),

asIwIuIW
fa
o

e A dominates Cand D
e B is not dominated by A
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Pareto-Optimal Set and Pareto Front ’L[Jj 3 A

WESTLAKE UNIVERSITY
[

The set of all the Pareto optimal solutions is called the Pareto set

The image of all Pareto optimal solutions in the objective space is termed Pareto front.

Decision space Objective space
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Pareto set / £
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front
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Shape of Pareto Fronts

Regular Pareto Fronts

Regular Pareto front
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Y. Hua, Q. Liu, K. Hao, and Y. Jin. A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts. IEEE/CAA

Journal of Automatica Sinica, 8(2): 303-318, 2021
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Knee Points (Solutions) W) =7k %

 Knee points are solutions on the PoF and need a large compromise in at least one objective to gain a small
improvement in other objectives [1].

* Physical significance: D>B or E->B: Much more gain on some objectives at the expense of a small amount of
decrease on other objectives, in other words, it has highest cost performance.
. A Pareto optimal
* Geometrical features: front (PoF)
» Large exterior angle [1] ~'
» Large distance to hyperplane [2]
» Large hypervolume [3]

i\% Knee point

(O  Extreme point

Increase

decrease

[1] K. Deb and S. Gupta, “Understanding knee points in bicriteria problems and their implications as preferred solution principles,” Engineering Optimization, vol. 43, pp. 1175-1204,

2011.
[2] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach,” IEEE Transactions on Evolutionary Computation, vol.

3, no. 4, pp. 257-271, 1999.
[3] X. Zhang, Y. Tian, and Y. Jin, “A knee point driven evolutionary algorithm for many-objective optimization,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 6, pp. 761-

776, 2015.



Difterences Between SOO and MOO WESEE

WESTLAKE UNIVERSITY

SO0 MOO
Target e Find the global optimal e Achieve the Pareto-optimal
solution solution set or a representative
subset
Performance Indices | ® Accuracy e Accuracy
e Efficiency e Spread
e Distribution
e Efficiency
Problem Structure e Fitness landscape e Fitness landscape (ruggedness, deceptiveness,
(ruggedness, deceptiveness, multi-modality, multi-modality, correlation, etc.)
correlation, etc.) e Distribution of the Pareto optimal solutions

(finite/infinite, convexity, continuity,
curve/surface, etc.)

10



Performance Indicator: HV ['Uj 5 3 A
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 Hypervolume (HV) is able to account for two aspects without a reference set, but the Nadir
solution need to be defined

- accuracy
- diversity

Nadir point

The larger H is, the better




Performance Indicator: IGD
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* Inverse generational distance (IGD) is able to account for two aspects, if the reference set is large

enough
- accuracy
- diversity

Z'UGP* d('_.v’ P)

D(P*.P) = =50

d(v, P) isthe minimal distance
between a solution vin
reference set P* and a

solution in the achieved
set P.

* Any issues with this performance indicator?

The smaller D is, the better

® Reference set (P*)

B Achieved set (P)




Evolutionary Algorithms for Optimization W) =7k %
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Evolutionary algorithms and other meta-heuristic search methods are a class of population-based, guided stochastic
search heuristics inspired from biological evolution and swarm behaviors of social animals

start end
O nnitialization ~ 7 @
p—
Representation/coding parents selection
A 4
O Evaluation
(Parent
Termination ¥y population)

Mate
selection

Environmental

Evolutionary Optimisation Loop

selection Variations Phenotype
control points
[xi [ ] v
strategy parameter
- o [ o]
Evaluation .
> (Offspring Geriotype
Beteol population)
|
; e—o O

recombination mutation offspring

Y. Jin and B. Sendhoff. A systems approach to evolutionary multi-objective structural optimization and beyond. IEEE Computational Intelligence Magazine,
4(3):62-76, 2009



Challenges in Optimization of Complex Systems @ B 3 e A
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Problem formulation
Large number of decision variables, multi- / many objectives, many constraints
Optimization in the presence of uncertainties

— Robust optimization
— Dynamic optimization

-

— Robust optimization over time eroltiionaryiopimization
free form deformation l ta-model
technology > : mefa-moce
design candldate aI network
Computational complexity ! L <=2AS
. . . . . intelligent data analysis change o
— No analytic objective functions available, or data only . : |
* knowledge extraction generation Bl ato
— Computationally intensive * expert syste . cyele  omputational
) * rule induction fluid dynamics (CFD)
— Experimentally costly © Monaco 2008
G’A.Q

‘ y W7 ect design selevitior = downforc§ gain 161N




Evolutionary Multi-Objective Optimization @ B 3 e A
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e Basic approaches to multi-objective optimization (bi- or three-objective optimization)
— Pareto dominance based approaches
— Decomposition using weight or reference vectors (cf. a scalarizing function)
— Performance indicator based approaches

fo
i Front 2 Front 3 A F(z)) R
........................................... o)
A B0 = !
Fromtl —  [aiNiicieices ; @ :
: F(x;)
Ol @ 159 - 49 2
Ty
> i
a) Pareto dominance based b) Decomposition approaches c¢) Performance indicator

K. Deb. Multi-objective optimization using evolutionary algorithms, Wiley, 2005



Many-Objective Optimization W) 272
MOPs with more than three objectives are called many-objective optimization problems (MaOPs)
e Dominance based approaches
— Loss of selection pressure in Pareto-based approaches

e Performance indicator based approaches
— Computational costs increases

e Decomposition based approaches
— How many weights / reference vectors are needed to be representative?

e Solution assessment becomes tricky
— The performance become very sensitive and also easily biased
— Solution sets are no loner comparable
— Diversity becomes trickier to measure

B. Li, J. Li, K. Tang, and X. Yao. Many-objective evolutionary algorithms: A survey. ACM Computing Surveys, 48:13-35, 2015

H. Ishibuchi, N. Tsukamoto, and Y. Nojima. Evolutionary many-objective optimization: A short review. In: Proceedings of IEEE Congress on Evolutionary Computation, pages 2419-2426.
IEEE, 2008

H. Wang, Y. Jin and X. Yao. Diversity assessment in many-objective optimization. IEEE Transactions on Cybernetics, 40(6):1510-1522, 2017



Many-Objective Optimization

Solutions:
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* Reduce objective number (this is more problem formulation than optimisation)
* Modify the dominance definition, often by incorporating preferences (bias) decrease the number of

non-dominated solutions

e Use performance indicator-based methods

e Use secondary selection criteria in addition to dominance
* Use decomposition (using weights, reference points, reference vectors ...)

o Maximize
Jf>r Maximize

0 f1: Maximize 0 fi: Maximize

(a) Original Pareto dominance. (b) Modified dominance.

55 hH o5 Hof 5

fa 5 A A Ja 5
(a) Solution A. (b) Solution B. (c) Solution C.

Solution B is favoured if f1-f4 are more important

H. Ishibuchi, N. Tsukamoto, and Y. Nojima.Evolutionary Many-Objective Optimization: A Short Review. Proc. of 2008 IEEE Congress on Evolutionary

Computation, pp. 2424-2431, Hong Kong, June 1-6, 2008.



Tools for Evolutionary Optimization of Complex Systems @ 5 3 < A
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e PlatEMO -- A software tool for teaching and research: https://github.com/BIMK/PlatEMO, which contains over
150 open-source algorithms and 300 benchmark and application problems

9
PlatEMO

Y. Tian, R. Cheng, X. Zhang, and Y. Jin. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization. IEEE Computational Intelligence
Magazine, 12(4): 73-87, 2017 (Winner of the “2019 IEEE CIM Outstanding Paper Award”, which has received over 1,900 citations)

UNIVERSITY OF

' SURREY

e EvoX -- A distributed GPU-accelerated framework for scalable evolutionary computation over 50 evolutionary
algorithms for single-objective optimization and multi-objective optimization, and over 100 benchmark
problems for numerical optimization, deep learning, and reinforcement learning

S~ EvoX

PPPPPPPPPPPPPP READTHEDOCS

3%Distributed GPU-accelerated Framework for Scalable Evolutionary Computation 3%

B. Huang, R. Cheng, Z. Li, Y. Jin, and K. C. Tan. EvoX: A distributed GPU-accelerated framework for scalable evolutionary computation. IEEE Transactions
on Evolutionary Computation, 2024 (accepted)


https://github.com/BIMK/PlatEMO
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NSGA-II
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Dominance based Selection for MOO W &#% 4

« Different from single-objective optimization, the selection strategy must be modified — the
fitness or rank based selection method is changed to dominance (non-dominated sorting)
and diversity based selection

QO Initialize

A 4

O Evaluate

Terminate y (Parent)

Recombine

() Mutate

Evaluate



Non-Dominated Sorting W &#% 4
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* The basic non-dominated sorting algorithm

— find the non-dominated solutions in the population,
which form the first non-dominated front. =
Assign a rank 1 to all solutions of the first front;

— remove the non-dominated solutions and >
find again the non-dominated solutions, which belong f4
to non-dominated front 2.
Assign a rank 2

— Continue this process until all solutions in the population are assigned to a non-
dominated front



Fast Non-Dominated Sorting W &#x%
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* Non-dominated sorting

» For each solution p, record n, (number of solutions that dominate p) and Sp (list
of solutions that are dominated by p)

n, (Number of S, (list of
solutions solutions A
dominate p ) dominated by p )
1 0 {3,5}
2 0 {3,4,5,6,7} s
3 2 {5}
4 1 {5}
5 6 {} >
6 1 {5} i
7 1 {5}



Fast Non-Dominated Sorting W) Ex%
* Non-dominated sorting

—  For all solutions p with n,= 0, assign rank 1 to them, and they form the front 1 in
the set F;,.

—  Front counter i=1.

n, (Number of

S, (list of solutions t

dz:::r:;:g; ) dominated by p)
1 0 {3,5} 1 o
2 0 {3,4,5,6,7} 1
3 2 {5}
4 1 {5} ‘
5 6 4 f -
6 1 {5}
7 1 {5}



Fast Non-Dominated Sorting

Non-dominated sorting (i=1)
» For each SO|Uti0np in F; \\ solutions 1 and 2 in this example
v' For each solutionin Sp\\ (3,5} and {3,4,5,6}
n=n, -1

» For the solutions with n,= 0, assign rank i+1, and i=i+1;

U

& A A
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RN -\ N 7S N ——

n, (No. of Sp (list of )
solutions solutions
dominate p )| dominated by p )
1 0 {3,5} 1 v
2 0 {3,4,5,6,7} 1
3 0 {5} 2
4 0 {5} 2
5 4 {} .
(n, is deduced by 1 for

6 0 {5} 2 solutions 4, 6,7, and by 2
7 0 {5} 2 for solutions 3, 5)

A 4



Fast Non-Dominated Sorting W &#x%
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* Non-dominated sorting (i=2)
» For each solution pin F;
v For each solution in Sp
n=n,- 1

—  For the solutions with n,= 0, assign rank i+1, and i=i+1;

i (s Sp (list of solutions [
el dominated by p )
dominate p ) —

1 0 {3,5} 1 =
2 0 {3,4,5,6,7} 1
3 0 {5} 2
4 0 {5} 2 f ”
5 0 0 3 |
6 0 {5} 2
; : (5) 9 (Sp is deduced by 4 for solution 5)



Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) @ 5 ] < A

WESTLAKE UNIVERSITY

4. Select the better

half of the O Initialize
2. Perform non—dominated combined
sorting on the combined population as the v
population parents.of the next O Evaluate
generlgatlon
t+l
--------------- [ Terminate (Parent)
N [ | R [
. Recombine
[ /
Q: ) ~Rejected Mutate
Ry
_ 3. Calculate the crowding distance
1. Combine parent for solutions in the same front. Evaluate (Offspring)
and offspring Sort
populations them in a descending order.




Crowding Distance W) 272
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« Crowding distance: For individuals in each non-dominated front, calculate the average side
length of its two neighbouring solutions of solution i, e.g.,

dy = d'g1td'gp; d'gq = dgq / (fmax —fmin)s d'yp = dgp / (famax — fmin)
ds = d's1*+d's; d'e1 = de1/ (f1max — ™), d'sp = de2/ (f2m2* — M)
fymin and f;max is the minimum and maximum of f; in the current front;
f,min and f,max is the minimum and maximum of f, in the current front;
da1 = [f1(I3) — f1(I6)l, daz = [f2(I5) — f2(Is)],
de1 = [f1(Ls) — F1(I7)[, de2 = [f2(14) — F2(I7)],
« Assign a large distance (e.g., infinite) to the extreme solutions -- solutions 1 and 2 for front 1,
solutions 3 and 7 in front 2, and solution 5 in front 3

""""""" der (3) 1

-1
d : : frontfi
= I@h de2 :
| g |

0

n 0 1
@ &ﬁront 2
front 1 !




NSGA-II: Mate Selection: Crowed Tournament Selection @ & H < A
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In the elitist non-dominated sorting genetic algorithm, crowded tournament
selection is used for choosing two parents to generate offspring:

» Choose two solutions randomly;

« The solution with the better (lower) rank wins, e.g.,(» @ , solution 1 wins;

 If the solutions have the same rank, the one with the larger crowding distance wins, e.g., @ ,
solution 4 wins;

« If the two solutions have the same rank and the same crowding distance, choose a winner
randomly.

a

________________________

v
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NSGA-II: Environmental Selection W) E#k%
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Environmental selection in NSGA-II:

Combine the parent and offspring populations (elitism)

Perform non-dominated sorting on the combined population

Calculate the crowding distance for individuals in the same non-dominated front
Rank the individuals based on the front number in an ascending order

For individuals in the same front, rank them according to the crowding distance in a descending
order

Select N top-ranked solutions out of the 2N solutions in the combined population, where N is the
population size
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NSGA-II: Environmental Selection: An Example T8  ;
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deo'% 1 front
o @ e o
_ :%;61 |
0‘.’ o I
@ de2 frontaI
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If 4 solutions are selected from the above eight, 1, 2, 8, 3 or 1,2,8,7 will be selected.
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Examples of Real-World Optimization Problems



Hybrid Electric Vehicle Controller Design W) &2 %
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HEYV Controller Model 1

| fi: Fuel consumption |

Internal Combustion Re-charging Electrici ty
Engine Grid

L

| f: Battery strss |

On/off | .
Operation Point | [ B: Operation changes |
| . .
_ Optimal design
HEV Energy SOC BEte < — — — — — _: | f4: Emission | parameters
Management Controller y |:(>

A A

/ [ f&: Urban operation |

. Driver Request
Electric Motor H Speed

[f7:  Battery state of charge]

|
|
|
|
|
|
|
| | Jf5: Noise |
|
|
|
|
|
|
|

L
Vit Objective Design
A Wh;els. e pramerss
Optimizer

11 Decision variables: T - —-—-—-—= -
SOC, ., (%): SOC threshold to turn off ICE
SOC,,, (%): SOC threshold to turn on ICE 7 Objectives:
v; (km/h): Lower speed for operation points * FC: Fuel consumption and CO2
v, (km/h): Upper speed for operation points e BS: Battery stress
rev, (/min): ICE speed for operation point 1 * OPC: ICE operation changes
torque,; (Nm): Torque for operation point 1 * Emission: ICE emissions
rev, (/min): ICE speed for operation point 2 * Noise: Perceived ICE noise
torque, (Nm): Torque for operation point 2 * UO: Urban operation
rev; (/min): ICE speed for operation point 3 e SOC: Average battery state of charge level

torque; (Nm): Torque for operation point 3
V. (km/h): Speed threshold to turn off ICE



1GNG-RVEA - Hybrid Electric Vehicle Controller @ & 3 5 4
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Multi-Scenario Vehicle Dynamic Optimization

Safe, stable handling and controllability in all driving situations up to vmax

High level of driving safety including the stability limits

Sufficient road and vehicle reaction feedback as well as predictable vehicle behaviours

w
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Steady, stable and comfortable straight-line driving behaviour (e.g., under cross-wind, road surface

profile irregularities)

Comfortable and precise steering which provides good feeling for road condition

Design variable symbol Wunitm
Total mass of car ™ [ke:
Roll inertis I [kgrn®;
Pitch inertia Iy | [kgm?]
Yow inertis, I [kgm?|
Wheel base { | [on]
Distance belween c.g. and front axle | 1, [m]
Height of c.g. above front axle he.g, _ [m] T
Half track width front tires wpx | [mm]

Half track width rear tires

| fom] |




Comparative Results @ 5 3 < A
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-3 )
4 = T 4 x10 | |
—o— GP-TRV i
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1 J .
Il | 7%—+17+'+77+—M774—#—4—f
1 ‘ ‘ , . | | | |
100 200 300 400 500 0 100 200 300 400 500

No. of fitness evaluations No. of fitness evaluations

Load results and analysis sensitivity analysis : 2: GPTRV_vehicleDynamics_M20_G382.mat
FF_multi; struct; I0_00_many_opt_20180720; CRT_RE19347; 00-Jan-0000

Info Pareto 3D Pareto2D Table Solutions Parallel Fitness Parallel SP Test1 Test2? Test3 Testd Test5 Test6 Test7 Testd Testd Testl0

Detach Copy
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Multi-objective Machine Learning



Basic Artificial Neural Network Models

Feed-forward neural networks
— Multilayer perceptrons (MLPs)
— Radial-basis-function networks (RBFNSs)

Recurrent neural networks
Spiking neural networks
Reservoir computing

Other models

ML L ALALL—
AL
WAL —
AL L
S AL, —

Spiking neural networks

Feed-forward neural networks

INPUT LAYER
HIDDEN LAYER

Reservoir computing

w
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Learning Algorithms @ 3 A

Supervised learning
— Need teaching signals (training samples)
— Often known as function approximation / regression / classification

Unsupervised learning
— no teaching signal exists
— figure out the structure in the observed information, often known as clustering

Image

Reinforcement learning Struetre Clasifcaton
L]

Fela:curg e Customer
e Elicitation  Fraud ® Retention

Meaningful Detection ®
. . . compression ®
Se m I _S U p e rV | Se d I e a r n I n g Dlzls%:fg:g\#w T ® Diagnostics
Big data
Visualisation

® Forecasting

Transfer learning / multi-task learning _— o N
Systems LEARNING LEARNING @ Predictions
: ; Targetted MACHINE ® Process
Weakly supervised learning Marketing MACHINE | " Comiaten
Cust:mer New Insights
Segmentation

Self-supervised learning

REINFORCEMNET |
LEARNING

Real-Time Decisions @ ® Robot Navigation
Game Al ® @ Skill Aquisition

®
Learning Tasks



Evolutionary Machine Learning @ 5 3 A

WESTLAKE UNIVERSITY

-« Evolutionary learning is
> able to solve non-convex learning problems
i > good for both (hyper)-parameter and structure optimization
Machine Learning [RS8 > good for multi-objective machine learning
e > good for automated machine learning

Evolutionary

Evolutionary
algorithms

Early attempts  NeuroEvolution Evolutionary Deep Learning
1989 1994 1997 2002 2004 2008 2009 2010 2012 2014 2017 2018 2019 2020 Q3 2020
—-_— ) I s I -

O I N N N N N N N N O R N R N R
MRS AP PN B U AN %-Qe&%-qu%z MSAHENES
o F&FHFEE TN T oc,‘%@; SO s Q&&é’@}- Y ‘\@zpﬁ \"?_QQ\L
o ¢ E &S oLy (© &L OO S L & © OO
A <* e CJNQ ) Q’A&Q N ol bo‘(\\q v {)"’@*@ sz"{)a ¥ 'SQ"\\’Q‘E’%\@E

Q@b ;}D{‘\ d\,
Taken from [2] S"sﬁ
Lal\>

[1] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87 (9):1423-1447, 1999
[2] A.D. Martinez et al. Lights and shadows in Evolutionary Deep Learning: Taxonomy, critical methodological analysis, cases of study, learned lessons,
recommendations and challenges. Information Fusion, 67:161-194, 2021



Evolutionary Multi-Objective Machine Learning

p—
V] dukates

Memorizing | Spiking neural Federated Deep Sparse

and forgetting networks learning learning coding
Data
. Ensemble Interpretable Neural network Support
clustering . - .- .
generation fuzzy rules regularization vector machine
ROC curve \\ \\ \
generation R \\\
Pareto-based Scalarized
Feature multi-objective learning multi-objective learning
extraction 1

Multi-objective
optimization

Multi-objective
machine learning

Single objective

optimization ‘

* Y.lJin and B. Sendhoff. Pareto-based multi-objective machine learning: An overview and case studies. IEEE Transactions on Systemes,
Man, and Cybernetics, Part C: Applications and Reviews, 38(3):397-415, 2008
* VY. Jin (ed.) Multi-objective machine learning. Springer, 2006
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Multi-objective Neural Architecture Optimization

Y. Jin and B. Sendhoff. Pareto-based multi-objective machine learning: An overview and case studies. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 38(3):397-415, 2008

Y. Jin, B. Sendhoff, and E. Kérner. Evolutionary multi-objective optimization for simultaneous generation of signal-type and symbol-type representations.
The Third International Conference on Evolutionary Multi-Criterion Optimization. LNCS 3410, pp.752-766, Springer, Guanajuato, Mexico, March 9-11, 2005



Objectives 1n Supervised Machine Learning

e Tradeoff between accuracy and complexity is inherent to machine learning

AIC = -2 log(L(8y, g)) + 2K

Accuracy / Complexity

e Different objectives in supervised learning

» minimizing more than one error function
** mean squared error
** mean absolute error

» minimize model complexity
** number of hidden nodes
** number of connections

» maximize diversity for ensemble generation
¢ structural diversity
¢ functional diversity

» maximize interpretability for interpretable rule extraction
** number of rules / rule length
s overlap in rules / fuzzy partition

» maximize robustness

» maximize fairness / privacy protection

w
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Learning with Regularization @ & 4 A A
e A complexity term is included in the cost function
J=E+ L Q
E -- Error function, Q -- complexity
A -- hyper-parameter
» Need to predefine a proper hyper-parameter

e Gaussian and Laplacian regularizers

- Gaussian regularizer - Laplacian regularizer
Ny a2 § —
1= Z wi s (= Z |"I_L.F.l'|
=i i=1

» Laplacian regularizer is believed to be more effective in reducing complexity

&0
A0
A0
AKE
A
OO
a‘,i.egé'..#g’,:’. A,*, 7 4 "L

Eolw)

w43

Gaussian Laplacian



Pareto-based Regularization

min {f,, f,}
h=E
=0

E: approximation error, QQ: complexity
- Gaussian regularizer
- Laplace regularizer

- number of connections / neurons

Error

@ & P R A

WESTLAKE UNIVERSITY

[
»

Complexity

- Instead of a single model, multiple models with a spectrum of complexity can be obtained simultaneously

44



Single- and Multi-objective Evolutionary Learning W &#x%
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Initialization

Evaluation

Termination

Parent

Architecture and /or

AN ML el parameter crossover/ mutation

and crowding distance
(Node/connection deletion

or addition; weight mutation)

Lifetime learning

Loss function (Gradient-based method)
Complexity

Interpretability

Robustness Offspring

Y. Jin, B. Sendhoff. Pareto-based multi-objective machine learning: An overview and case studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 38(3):397-415, 2008



http://ieeexplore.ieee.org/iel5/5326/4492353/04492360.pdf?isnumber=4492353&prod=JNL&arnumber=4492360&arSt=397&ared=415&arAuthor=Jin+%2C+Y.%3B+Sendhoff%2C+B.

Structure Optimization - Direct Representation

e Direct architecture and weight representation

> a connection matrix
» a weight matrix

e Poor scalability in particular for deep neural networks

1 2 n 1 2 - H 1 2 - m

0 0 0 o 0 -- 01]]j0 0 -~ 0

21| [0 0 0 6o 0 -- 01]0 0 -~ 0
n| [0 0 0 0 0 0 0
Llw, w, - w, [0 0 0 0

20wy Wy, oW, 0 0 0 0
H\wy, Wy, - Wy 0 0 0|0 0
110 0 0 vy v, vig |0 0

2010 0 of v, v, Vo |0 0
m| |0 0 0] Vi Vo Vou 0.0 --- 0

Connection matrix

MP

in MP 3x3 1x1 3x3 1x1 out

3x3

1x1

3x3

1x1

out

)

)

Network architecture

5
-

© o

| .
5,
"

4
-
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Analyses of Pareto Front @ 3 A

e By analyzing the “accuracy-complexity” Pareto front, we are able to gain deeper insights into the
learning problem

» |dentify Pareto-optimal solutions of low complexity from which interpretable rules can be
extracted

» |dentify networks that are able to generalize on unseen data

» |dentify well-performed networks with diverse structures for building ensembles

Y. Jin, R. Grunar, and B. Sendhoff. Pareto analysis of evolutionary and learning systems. Frontiers of Computer Science in China, 3(1):4-17, 2009
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Rule Extraction Example 1: BCD Data W) &2 %

WESTLAKE UNIVERSITY

* Breast cancer diagnosis (BCD) data, nine attributes, two classes (benign, malignant)

e Simplest Pareto-optimal: No input feature is chosen, 3 0.2 —
: Simplest model that
connections ’ ’> (ams the mean
1.0 1.0 . of the training data
y = 0.65 12.71 \:15 L0151
[0}
-0.537 = Interpretabl
> )—» y 01} modes

e Pareto-optimal NN1: only 1 input feature (x,) is chosen, 4
connections

S uo 00 BRI e o0

0 10 20 30 40 50 60 70
Number of Connections

821 Z g -0.68
Xy @ Q > b
—2.?/ 0.57
o @
10 10

If y < 0.25, then benign -0.68g + 0.57 < 0.25 = benign g=z/(1+|z|])

R1: If x,> 0.5, then malignant;
R2: If x, <0.2, then benign 49




Rule Extraction Example 1: BCD Data

Pareto-optimal NN2:
e 6 connections
e 3 input features (x2, x4 and x6) are chosen

MSE

0.25

0.2f

0.151

0...] |

0.05¢

& <— Simplest model that
learns the mean
of the training data

Interpretable
models

X2
—0.593
X4 - Ll 2
0.562
X4

1.0

W 200 WRNMNIN e

"

10 20 30 40 50 60
Number of Connections

RT:If X0>20.6vXx>209vXx,>205AX%>0.2 v
X220.4/\X620.4\/X2ZO.3/\X620.5 vV
X2 > 0.2 A Xg> 0.7, then malignant;

R2: Ifxo<0.1AXsg< 04vXx, <024

Xe < 0.2, then benign

(X4 is too weak to play any role in the rules)

50

70

w
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Rule Extraction Example 2: Iris Data ['Uj 5 3 A
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e 4 attributes (Sepal-length, Sepal-width, Petal-length, and Petal-width)

e 3 classes (lris-Setosa, Iris-Versicolor, and Iris-Virginica)

e 150 data samples in total, 50 for each class (40 of which for each class are used in training)
e 11 networks are obtained

50

»n 401 8

S

3 ¢

()

< 30}

S

S 2l ¢ '

g g

=

>

Z 10t @ @ i
0

0 002 004 0.06 0.08 0.1 0.12
RMS on Training Data



Example 2: The Simplest Network @ & ] < A
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* Only one attribute is chosen

* Class 1 can be separated form others, but not class 2 and X)
class 3
* 8 connections

X3
X4
. 8
Rule: If x3 < 2.2, Then Iris-Setosa
6 L
MNP pL
s e PV - t s
of W e - ..‘l.ot‘.“o\“"..::.C-.‘i'.::-:Ml ‘:‘
2 X3 A “. d ’ :b’\‘ ,n‘:u RURY '| "“4
S e \/vnv ,"!\‘.‘lv,\"",\ ,.‘\’ N v ! .
PR X4 Iris-Virginica
0 - - -\ Ne @ |
Iris—=Versicolor
Iris—Setosa
_2 1 1 1 1 1
0 20 40 60 80 100 120

Number of Training Samples



Example 2: Second Simplest Network W) E#A%
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e Only two attributes are chosen X,
e All classes can be separated correctly

8
R1:If x3<2.2 AX4< 1.0, ,
Then Iris-Setosa; ol
5,
R2:If x3> 2.2 A X< 1.4, 4l X2
Then Iris-Versicolor; 3l VJ\'AN\MMWA
D) X3 ;"," "|»'"|'\ Vo :L
. . . . B NSy ,‘,l“" ﬁ_! 'Y '|' MR W
R3: If x, > 1.8, Then Iris-Virginica, 1W UM G
of TR :‘,,', oo ___ Ylris-Virginica
1 ris-Setosar s versicolor
0 20 40 60 8 100 120

Number of Training Samples



A Full-Length Science Paper

Physical System

Schematic

Experimental Data

300
N N " A
200t/ i\ I3 I\
100} /\ .'/-\ [ 13
of 1\ f \//\/\
WV
-mo/ \ \/ | t 3 \
200} \/ v/ v/ v/
\/ \ ¥, W
o 2 ] 6 8 10
Time (s)
300
200

X2
I
Vi
'\'3
% 2 4 6 8
Time (s)
15

10 15 25 0 35

34 345 35 355 36 365 37
Time (s)

Inferred Laws

114.28v* + 692.32x°
Hamiltonian

vV’ — 6.04x?
Lagrangian

a—0.008v —6.02x

Equation of motion

-142.19x; — 74.65x, + 0.12x,% —
1.89X1X2 -1.5 IXQZ T O.49V22 =+
0.41v,v, — 0.082v,’

Lagrangian

1.37-w” + 3.29-cos(6)

Lagrangian

2.71a+ 0.054c — 3.54sin(6)

Equation of motion

(x—77.72)* + (y - 106.48)

Circular manifold

wi? +0.320,° -
124.13co0s(6,) — 46.82cos(6,) +
0.820)1(02005(91 = 92)

Hamiltonian

Schmidt M., Lipson H. Distilling free-form natural laws from experimental data. Science, Vol. 324, no. 5923, pp. 81 — 85, 2006
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A Full-Length Science Paper @ & 2 4

kO, — k.o ko’ + ko o, cos(0,-k.0,)+ k, cos(0,) + k,cos(0,) - kg cos(k, 0,) — k,,
0 costk,—k;,0,)

ki + kyw, ~ kyo, @, cos(0, - 0,) - k,cos(0,) — ks cos(@,)

(R

k@~ k, 05" + k, @, w,cos(8,) + k, cos(8,) + k, cos(8,)

'kl (0| _kz "): + k} w. COS(()' -02) + k.‘"): COS(l" == 0:)

kym, @, —k,cos(, - 0,)

-1.2
Wy cos(0,0,) + m,

Predictive Ability [-log error]

-1.6

Less
Predictive

-10° -10
Complex Parsimony [-nodes) Simple

Schmidt M., Lipson H. Distilling free-form natural laws from experimental data. Science, Vol. 324, no. 5923, pp. 81 — 85, 2006



ATl Feynman 2.0: Pareto-optimal symbolic regression exploiting @ & 3 4
graph modularity

3 ' ' T
2 1

525' e (cos(%) 1) .
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i B n SR
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?10- ] 10‘53

<

5 .

5 5|
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0 : ; 2 10°%
0 5 10 15 30
Complexity [bits]

Udrescu, Silviu-Marian, et al. “Al Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity.” NeurlPS 2020
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Selection of Generalizable Models



Identifying Networks That Can Generalize

The complexity that matches the data is the one that reaches maximal normalized

performance gain (NPG):

MSE; — MSE;

AT DY
NPG=="C
Ve Ay
U.Ub R T T T 006
£ . .
Training data
o m
0.05 0.05k uum u“ _
=]
AN
. 0.04r o
g Knee point 5004 B
i -
w
goo3 2 @
= "~'~.,¢:\ A -
E | o, " oo . ERERLE
0.02r A
B
A A 0.02+ %u
001k DOL AANKN DOMIN Ay A Test data
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Identifying Networks That Can Generalize

Models that can
generalize

0.01¢

0 20 40 60 80
Number of Connections

Breast Cancer Data

Run 1:
: Training
Run 2:

o Test

@ & # R

WESTLAKE UNIVERSITY

03k Models that can

0 10 20 30 40 S0
Number of Connections
Diabetes Data
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Multi-objective Clustering

J. Handl and J. Knowles. (2005) Exploiting the trade-off -- the benefits of multiple objectives in data clustering. Proceedings of the Third International Conference on
Evolutionary Multi-Criterion Optimization (EMO 2005). Pages 547-560. LNCS 3410



Multi-Objective Clustering - Objectives W 27kt

Pareto-based multi-objective clustering has shown to be helpful for
determining the number of clusters (Handl and Knowles, 2005)
e Two objectives

» Cluster compactness, described by overall deviation

» Cluster connectivity, expressed by the degree to which neighboring data points are grouped
in the same cluster

(minimize)

connectivity
(minimize)



Multiobjective Clustering - Coding

Coding: locus-based adjacency scheme

lItol
3to1
4t03
2t03
7to4
8to7
5to4
6toS

Genotype:

Order of connection:

(6) 1(3]1/3 4

5

4

7

Sub-graphs need to be detected and data items in the same sub-graph are grouped in the same cluster

w
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Multiobjective Clustering - Crossover @ & B A

WESTLAKE UNIVERSITY
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7 / \ - \I
f ©) ! Ve
Uniform crossover L W ] 0-‘(? 4
N -7 N ,’
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Multiobjective Clustering - Mutation

-
- At
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Multi-Objective Clustering - Example

e Data set: Squarel

e Analysis of Pareto-optimal solutions

— Calculate attainment score (maximum distance between solution and control)

Attainment score

1 e 2o T T ~ L
[EEs Solution ®
- Control -
- 08F[
= 06
=
E 04\ e,
@
O 0ok Largest minimal
distance with 4 clusters
0 ' : '
0 0.2 04 0.6 0.8
Connectivity

Connectivity deviation tradeoff

1St
i0F
S
ot
£
-10 1 M
-10 S 0 =) 10 15 20
03 g7 T T T — T T
; Solution ©
025 | U .
L
1
02r E: EE T
015 1 Be -
! B
1
oxp B :
: e
SR
005F 50 8 .
1 8 B8
1 B
v bee—t 1 ! 12§ | I
0 5 10 15 20 25 30 35

Number of clusters

Attainment score of the Pareto-optimal solutions
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Multi-Objective Feature Extraction

+  W. A. Albukhanajer, J. A. Briffa and Y. Jin. Evolutionary multi-objective image feature extraction in the presence of noise. IEEE Transactions on Cybernetics,
45(9):1757-1768, 2015.
« W. A Albukhanajer, Y. Jin, J. A. Briffa. Classifier ensembles for image identification using multi-objective Pareto features. Neurocomputing, 238:316-327, 2017 .



Trace Transform for Feature Extraction ) &7t
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TRACE

Image Functional (T)

2
LJ

DIAMETRIC

Trace Matrix .
Functional (D)

CIRCUS
Functional (C)

Diametric vector

Triple Feature TJ]
(Real number)




Trace Transform for Feature Extraction W) &2 %

WESTLAKE UNIVERSITY
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Evolutionary Trace Transform
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Parameters and functionals can be optimised using an evolutionary multi-objective optimisation algorithm

No. | Functional
TO :.‘:‘1 Ti
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142
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Multi-objective Optimization Algorithm W) =7k %
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T Initialize

() Evaluate

2. Non—-dominated 4. Crowded

sorting 3. Crowding Non-dominated

distance sorting
sorting Py

(Parent)

O Mutate

—~-Rejected

Evaluate (Offspring)

Evolutionary algorithm
Elitist non-dominated sorting and selection



Criteria for Image Feature Extraction WJ E#x
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1. Minimize the within-class feature variance (S,,)
2. Maximize the between-class feature scatter (S;)

Inin{fla f2}a

C
fl — S'wa :Z
1 k=1 j=1
C
2

f2:(5b+6)’ S

QO a

-

1 1 1 1 1 1 1 1
0 250 500 750 1000 1250 1500 1750




Parameter Encoding WJ 245

e Single features

Tl D1 Cl 01

e Paired features

Tl D) Cl 01 T2 D2 C2 02




Image Database U) =714
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Fish-94 Database COIL-20 Database



Robustness to Noise W) &2 %
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e How can we evolve Trace transforms that are robust to noise in addition to RST
transformations?

(e) 6%.

Images with salt and pepper noise.



Parameter Setting

NSGA-II

Parameter Value

Np 150
Pm 0.125

P, 0.9

Number of generations 200
‘ 10—5

Training samples

ETT

Sample 1: A low-resolution image (64 x 64)
generated from a randomly chosen original image
(256x256);

Sample 2: Random rotation [1°-359°] of Sample 1;
Sample 3: Random translation of Sample 1 (objects
remain within image boundaries);

Sample 4: Random scale (0.1-0.9) of Sample 1.

V] dukates

ETTN

Sample 1: A low-resolution image from
(64x64) generated from a randomly chosen
original image (256x256);

Sample 2: Random rotation, scale and
translation of Sample 1 with Gaussian noise
(standard deviation=4);

Sample 3: Random rotation, scale and
translation of Sample 1 with Gaussian noise
(standard deviation=6);

Sample 4: Random rotation of Sample 1;
Sample 5: Random scale of Sample 1.



Extracted Pareto Optimal Features

Solution No. ETT ETTN
1 T2 D4Cy  ToDsCs
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Ensemble with Pareto Optimal Features @ & 3 A

Traditional ensembles Ensembles using Pareto optimal features
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Multi-Objective Evolutionary Federated
Learning

H. Zhu and Y. Jin. Multi-objective evolutionary federated learning. IEEE Transactions on Neural Networks and Learning Systems, 31(4): 1310-1322, 2020



Privacy-Preserving Federated Learning @ & ¥ K B
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1. Downloading model parameters

MEC]platform

2. Updating the model with own data

Server i
.

4. A ting client updat |
ggregating client updaies 3. Uploading the new parameters



Privacy-Preserving Federated Learning @ 5 3 < A
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e Federated learning is a machine learning setting where the goal is to train a high-quality centralized model with
training data distributed over a large number of clients, each with unreliable and relatively slow network

connections.
G@
/I @ @ \\_

Data ) Data
from A NG from B

st

Federated model
Server A | @ Sending encrypted gradients | 9! Q

| (2 Secure aggregation |

[
QIR0
o: W0

| @ Sending back model updates |

% @ Updati del
pdating models

@ ||®

®

(3

TN T RS

PR XX XK o4 ol

K v R % KR

—-‘ Encrypted model training |-

Encrypted entity alignment | (O] Sending public keys |

| (2) Exchanging intermediate results

O 0, o, 1 ’
P =
- | () Computing gradients and loss
Corp. A ¢ N Corp. B
Database B, Database B, Database B, No data exchange 3 Sodatng ol

a b

EREAEIES

U1 6000 600 No

DB1 u2 5500 500 Yes
U3 7200 500 Yes

ua 6000 600 No

us 6000 600 No

| U6 5 75 520 U9 4520 500 Yes U9 4520 500 Yes

bB3 17 8 a0 600 U10 6000 600 No u10 6000 600 No

Horizontal federated learning Vertical federated learning



Main Challenges in Federated Learning W &#% 4
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Extra communication cost, computation power and storage capacity are required
e The data on each edge device

— Class labels may be imbalanced

— Attributes may not be independent and identically distributed (Non-IID)

— Attributes may be vertically partitioned

e Vulnerable to adversarial attacks

e Not all clients may participate in learning in each round, and the number of clients may be huge, and
the clients may be heterogeneous in computation and communication power

H. Zhu, J. Xu, S. Liu and Y. Jin. Federated learning on non-iid data: A survey. Neurocomputing, 465: 371-390, 2021
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Bi1-Objective Federated Learning ’L[Jj 3 A

e Objectives
— Maximization of the learning performance of the central model
— Minimization of the communication cost
e Decision variables
— The hyperparameters, such as learning rate, batch size
— Parameters of the deep neural network

— Structure of the deep neural network

e How to encode deep neural networks such as CNN and MLP?



Scalable Encoding of Neural W &#x%
Connectivity

WESTLAKE UNIVERSITY

e Encoding of deep neural networks is extremely challenging since it involves a very large number of decision
variables

e A modified sparse evolutionary training (SET) is adopted:

Use a Erdos Rnyi random graph to determine the connectivity between every two neighboring layers of the

neural network “(n* + k1)

kpk—1

n(Wky =
p(W35) -

'V = nFnFlp(wk)

where nkand nk-*are the number of neurons in layer k and k - 1, respectively, W¥; is the sparse weight matrix
between the two layers, € is a SET parameter that controls connection sparsity, and n% is the total number of
connections between the two layers

It is easy to find that the connection probability would become significantly lower, if € < nkand £ « nk-1

remove a fraction ¢ of the weights that have updated the smallest during each training epoch, which can be
seen as the selection operation of an evolutionary algorithm

Removal is applied at the last SGD iteration only

H. Zhu and Y. Jin. Multi-objective evolutionary federated learning. IEEE Transactions on Neural Networks and Learning Systems, 31(4): 1310-1322, 2020



Genetic Representation

Number of hidden layers
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Number of conv layers Number of fully connected layers
00000 —— 1 l |
0.3 | 0.1 [0010011 | 3 | 0001111 [ 0011111 | 1111111 | 1010100
£=03(7=01] €20 | f=3 convi=16 conv2=32 fcl=32 | fc2=32

Equivalent to kernel channels
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M

conv fxf CONVET ™ maypool2x2
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14x1dxconv2
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Fully connected layers



Bi1-Objective Federated Learning

Minimize the following two objectives using NSGA-II

By =1- A,
K
Q=Y /K

Initialization

~~ Parent P;
-

Non-dominated
sorting

Selection
Crossover &

Mutation

¥

Crowding distance
sorting

(]) Offspring Q;

k4

Crowded tournament
Selection

Generate the
shared global model

.

Apply modified SET

!

FedAvg training

¥

Calculate objectives

Ry =P + @

w
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Experimental Settings W &#x%
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e The standard FL: MLP and CNN on the MNIST data
— MLP: a learning rate of 0.1 and the batch size is 50;

— two hidden layers, each having 200 nodes (199,210 parameters in total) and uses the RelLu function as the
activation function

— CNN: two 3 X 3 kernel filters (the first with 32 channels and the second with 64 channels)

— a2 X2 max-pooling layer, a 128 fully connected layer and finally a 10 class softmax output layer (1,625,866
parameters in total)

— 100 clients, mini-batch size = 50, training epoch =5

e For the evolutionary FL:
— Population size =20, generation = 20 for IID data and 50 for non-1ID data
— Communication round =5 for IID data and 10 for non-IID data
— €=20and ¢=0.3 (for comparison)



Influence of the Connectivity

€=20and ¢€=0.3

Local data distributions 11D non-IID
Accuracy Connections Accuracy Connections
Fullv connected MLP 98.13% 199.210 97.04%  199.210
- CNN 98.85%  1.625.866 08.75%  1.625.866
Sparselv tad MLP 96.69%  19.360 04.45%  18.785
Patsely COMNECIst NN 98.44%  185.407 08.32%  184.543
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Results

Hypervolume
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Results W) &A%

HYPER-PARAMETERS OF HIGHI. HIGH2. KNEELl. AND KNEE2 FOR MLPs
EVOLVED ON non-IID DATA AND THEIR VALIDATION RESULTS

Parameters Kneel Knee2 Highl High2  Standard
Hidden layerl 49 53 86 109 200
Hidden layer2 200

€ 10 8 66 34

£ 0.1106 0.0764 0.1106 0.1566

Learning rate 1j 0.3 0.2961 0.3 0.3 0.1

Test accuracy IID 96.78% 96.41% 97.82% 97.68% 98.13%
Connections I1ID 7.749 5,621 45,329 22.210 199.210

Test accuracy nonlID 94.85% 94.88% 97.32% 96.21% 97.04%
Connections nonllD  8.086 6.143 45,530 24.055 199.210

HYPER-PARAMETERS OF HIGH1. HIGH2. KNEELl. AND KNEE2 FOR CNNs
EVOLVED ON non-IID DATA AND THEIR VALIDATION RESULTS

Parameters Kneel Knee2 Highl High2  Standard
Conv layerl 17 5 53 33 32

Conv layer2 64

Fully connected layerl 29 21 208 31 128
Fully connected layer2

Kernel size 5 5 5 5 3

IS5 18 8 66 20

£ 0.1451 0.1892 0.0786 0.1354 /
Learning rate 1 0.2519 02388 0.2776 0.2503 0.1

Test accuracy IID 98.84% 98.15% 99.06% 98.93% 98.85%
Connections IID 48949 6262 622090 107224 1.625.866

Test accuracy nonlID  97.92% 97.7%  98.52% 98.46% 98.75%
Connections nonlID 39457 6804 553402 90081 1.625.866
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Search for Robust Neural Architectures



Adpversarial Robustness of Deep Neural Networks ML

WESTLAKE UNIVERSITY

el et 1Y e P e

e sign(Ve(0.2.9)  0n(V,J(8, 2, 1))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

e Fast Gradient Sign Method (FGSM)

Adversarial example: X =x+ g sign(VxJ(H, X, Y))

(Goodfellow et al., 2015)
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White-box Attacks @ 5 3 A

White-box attacks assume that the
adversary knows detailed information
of the targeted models

* model architecture
* hyper-parameters
e gradients

e training data

(d) PGD. (e) FFGSM.
Various adversarial attacks on Inception V3

C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: CVPR 2016, pp. 2818—-2826.



Adversarial Robustness by Design @ 5 K A
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* Most existing work investigate the robustness of various deep learning models under a particular
type of attack

* Isit possible to search for neural architectures that are robust to multiple adversarial attacks?

* Objectives
» Accuracy on clean data
» Robustness to five types of white-box attacks




Adversarial Robustness by Design W &#% 4

WESTLAKE UNIVERSITY

* It will be computationally extremely intensive to evaluate the performance of all candidate
architectures on the clean data and four white-box and one black-box adversarial data sets

* One of the five attacks is randomly selected in each assessment to reduce the computational cost,

* To make the adversarial performances comparable, the adversarial error is normalized over the
performance of 18 baseline DNN architectures

—_—_————————— e ——— —

Err,q the error rate on adversarial examples
S B T | generated from a randomly selected type of
:lfl = /B = (I—NZl(y ==1))x100%! adversarial attack, 44 and o; and are the mean
———————————————————————————————————— and the standard deviation of the error rate of
different baseline architectures under the i-th
adversarial attack

=
=
=
s
I
=
>

S —_———— e — — —

SN
[|

R R R R R R Ao R —E————————————————L—

J. Liu and Y. Jin. Multi-objective search of robust neural architectures against multiple types of adversarial attacks. Neurocomputing, 453: 73-84, 2021



Neural Network Representation (Micro Search Space) @ 3 A
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Xi|0[0O(5(1[7]0]4|0]0]|3|5|1[(0(0f(0f0|8|0|1]|0|7|1]2]|0|8|2[0(2[6(3|7]0

___________________________________________________________________________________________________

Operations _ g | g
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Overall Framework
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Comparative Results
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Datasets Models Clean Acc (%) FGSM (%) BIM (%) PGD-7 (%) PGD-10 (%) PGD-20 (%) PGD-50 (%) FFGSM (%) BIk-FGSM (%)
PreAct ResNet-18 83.54 55.50 67.89 48.47 48.45 48.43 48.43 48.47 59.05
WideResNet-34 86.52 53.57 67.65 47.10 47.10 47.10 46.90 47.10 56.75
RobNet-small 78.05 53.93 - - - 48.32 - - -
RobNet-medium 78.33 54.55 - - R 49.13 - B B
RobNet-large 78.57 54.98 - - - 49.44 - - 61.92
RobNet-large-v2 85.69 57.18 - - - 50.53 - - -
CIFAR-10 RobNet-free 82.79 58.38 - - - 52.74 - - 65.06
E2RNAS-C46 96.36 - - - 10.21 - - - -
E2RNAS-C36 95.81 - - - 9.61 - - - -
E2RNAS-C25 95.14 - - - 7.76 - - - -
E2RNAS-C16 93.97 - - - 6.76 - - - -
Ours 82.82 59.42 66.18 58.56 58.44 58.42 58.41 58.87 66.2
PreAct ResNet-18 60.78 30.35 47.51 28.63 28.04 28.02 28.01 28.30 31.50
WideResNet-34 60.57 30.84 44.93 29.53 29.11 28.61 28.61 29.34 32.94
E2RNAS-C38 80.7 - - - 4.90 - - - B
CIFAR-100 E2RNAS-C36 80.81 - - - 4.00 - - - -
E2RNAS-C29 80.2 - - - 3.78 - - - -
E2RNAS-C20 77.03 - - - 3.44 - - R -
Ours 59.98 35.72 42.24 35.02 34.55 34.56 34.56 35.11 41.59
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Multi-Fidelity Multi-objective Search of
Robust Neural Architectures

J. Liu, R. Cheng, Y. Jin. Bi-fidelity evolutionary multi-objective search for adversarially robust deep neural architectures. Neurocomputing, 550: 126465, 2023
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Motivations - Enhance Computational Efficiency W &#x%

* To accelerate the search process, we predict the performance of candidate architectures by combining
weight sharing with a predictor-based evaluator, where the parameters directly inherited from a trained
robust supernet, and the performance calculated from a partial validation set (20%) is used as a low-fidelity
fitness evaluation

* We calculate the performance of architecture on the entire validation set as the high-fidelity fitness
evaluation and a surrogate model is built from the high-fidelity fitness evaluation and used to approximate
the high-fidelity fitness function

* A three-objective optimization problem is formulated to further enhance the efficiency in search for

adversarially robust DNNs, where the performance predicted by a surrogate model is introduced as a third
objective, called auxiliary objective

min : F(x) = {fi. fo, fa}

1 fi(x), f5(x) denote the low-fidelity fitness evaluations
I - . . -
N1 = fiG0) = 1= (57 2 1 ==)) calculated by the error rate on the partial validation set;

fa(x) = folx) =1— (¥ > Wfaaw == y)) fa(x) represents the auxiliary-objective which is predicted
by the surrogate model
fa(x) = [(x)



Network Representation
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2 SN (res_sep, 0), (res_sep, 1)
3 1,1,1 = (skip_connect, 0), (skip_connect, 1), (skip_connect, 2)
4 3,2,0,3 (res_sep, 0), (sep_cony, 1), (none, 2), (res_sep, 3)
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Comparative Results Wj =754
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The maximum computing time is set to 3 GPU days

- 037 ' ' ' ' ' "o 0.452 T T T r T T
2 os6b [oMORASH @ MORASSR
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Error rate on clean validation data Error rate on clean test data
Pareto fronts obtained by comparative experiments, where The performance of architectures obtained by comparative
the parameters are inherited from the supernet experiments after adversarial training from scratch.

“H" and “L" stands for high- and low-fidelity, respectively. “M" denotes MLP, and “R” denotes RBF. “S"
stands for solely using a surrogate. “SH" denotes surrogate as a helper objective



Comparative Results @ B B A
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TABLE I: Comparison with peer competitors under various adversarial attacks on CIFAR-10.

Architecture Clean (%) FGSM (%) PGD-7 (%) PGD-20 (%) PGD-100 (%) #Para (M)  FLOPS (M)
Manually designed networks MobileNet-V2 77.0 53.0 50.1 48.0 47.8 2.30 182
VGG-16 79.9 537 50.4 48.1 479 14.73 626
ResNet-18 83.9 57.9 54.5 51.9 51.5 11.17 1110
RobNet-Free 82.8 58.4 55.1 52.7 52.6 5.49 1360
NAS-based methods MSRobNet- 1560 84.8 60.0 56.2 53.4 529 5.30 1588
MSRobNet-1560-P 85.2 59.4 55.2 51.9 51.5 4.88 1565
MORAS-SHNet-M1 85.8 59.4 55.5 32.5 521 5.22 1634
MORAS-SHNet-M2 85.4 60.1 55.8 52.9 524 5.05 1606
Ours MORAS-SHNet-M3 85.5 59.6 55.6 52.8 32.5 5.20 1661
) MORAS-SHNet-R1 86.0 59.9 354 52.1 51.6 5.60 1525
MORAS-SHNet-R2 83.6 59.9 56.2 53.1 52.6 5.42 1471
MORAS-SHNet-R3 83.1 59.9 55.8 53.0 52.7 541 14384

TABLE I1I: Comparison with peer competitors under various adversarial attacks on SVHN.

Architecture Clean (%) FGSM (%) PGD-7 (%) PGD-20 (%) PGD-100 (%)
MobileNet-V2 939 73.0 f1.9 55.7 539
Manually designed networks VGG-16 92.3 66.6 35.0 47.4 45.1
ResNet-18 923 73.5 574 51.2 48.8
RobNet-Free 94.2 84.0 66.1 50.7 56.9
MNAS-based methods MSRobNet-1560) 95.0 77.5 GENY] 57.0 54.2
MSRobNet-2000 949 84.8 f5.3 58.8 55.1
MORAS-SHNet-M1 048 86,7 784 66.0 61.2
MORAS-SHNet-M2 94.4 84,3 63.3 S58.6 35.6
Ours MURAS—S[—IH&—MS 95.8 ‘,_H].li 85.7 '?3.':_-' 66.3
' MORAS-SHNet-R.1 949 85.4 6.1 57.8 549
MORAS-SHNet-R2 94.3 339 6H3.8 SE. 354

MORAS-SHNet-R3 94.7 77.3 61.4 55.1 52.8
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Summary W) =7k %

e Multi-objective machine learning based on Pareto-optimality provides novel perspectives on
machine learning

e Models of different qualities (accuracy, complexity, interpretability, robustness, and fairness) are
of great interest and deserves more attention in machine learning

e The Pareto-front achieved by evolutionary multi-objective algorithms reveals important
information of the problem at hand



